Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Front Neuroanat ; 18: 1380520, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567289

RESUMO

Introduction: Peripheral nerves are frequently affected by lesions caused by traumatic or iatrogenic damages, resulting in loss of motor and sensory function, crucial in orthopedic outcomes and with a significant impact on patients' quality of life. Many strategies have been proposed over years to repair nerve injuries with substance loss, to achieve musculoskeletal reinnervation and functional recovery. Allograft have been tested as an alternative to the gold standard, the autograft technique, but nerves from donors frequently cause immunogenic response. For this reason, several studies are focusing to find the best way to decellularize nerves preserving either the extracellular matrix, either the basal lamina, as the key elements used by Schwann cells and axons during the regenerative process. Methods: This study focuses on a novel decellularization protocol for porcine nerves, aimed at reducing immunogenicity while preserving essential elements like the extracellular matrix and basal lamina, vital for nerve regeneration. To investigate the efficacy of the decellularization protocol to remove immunogenic cellular components of the nerve tissue and to preserve the basal lamina and extracellular matrix, morphological analysis was performed through Masson's Trichrome staining, immunofluorescence, high resolution light microscopy and transmission electron microscopy. Decellularized porcine nerve graft were then employed in vivo to repair a rat median nerve lesion. Morphological analysis was also used to study the ability of the porcine decellularized graft to support the nerve regeneration. Results and Discussion: The decellularization method was effective in preparing porcine superficial peroneal nerves for grafting as evidenced by the removal of immunogenic components and preservation of the ECM. Morphological analysis demonstrated that four weeks after injury, regenerating fibers colonized the graft suggesting a promising use to repair severe nerve lesions. The idea of using a porcine nerve graft arises from a translational perspective. This approach offers a promising direction in the orthopedic field for nerve repair, especially in severe cases where conventional methods are limited.

2.
Biomed Pharmacother ; 174: 116514, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574618

RESUMO

Plant-derived nanovesicles (PDNVs) have recently emerged as natural delivery systems of biofunctional compounds toward mammalian cells. Considering their already described composition, anti-inflammatory properties, stability, and low toxicity, PDNVs offer a promising path for developing new preventive strategies for several inflammatory diseases, among which the inflammatory bowel disease (IBD). In this study, we explore the protective effects of industrially produced lemon vesicles (iLNVs) in a rat model of IBD. Characterization of iLNVs reveals the presence of small particles less than 200 nm in size and a profile of bioactive compounds enriched in flavonoids and organic acids with known beneficial properties. In vitro studies on human macrophages confirm the safety and anti-inflammatory effects of iLNVs, as evidenced by the reduced expression of pro-inflammatory cytokines and increased levels of anti-inflammatory markers. As evidenced by in vivo experiments, pre-treatment with iLNVs significantly alleviates symptoms and histological features in 2,4 dinitrobenzensulfuric acid (DNBS)-induced colitis in rats. Molecular pathway analysis reveals modulation of NF-κB and Nrf2, indicating anti-inflammatory and antioxidant effects. Finally, iLNVs affects gut microbiota composition, improving the consistent colitis-related alterations. Overall, we demonstrated the protective role of industrially produced lemon nanovesicles against colitis and emphasized their potential in managing IBD through multifaceted mechanisms.

3.
Mol Biol Rep ; 51(1): 425, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492036

RESUMO

Small extracellular vesicles (sEVs) isolated from animal sources are among the most investigated types of cell-free therapeutic tools to cure different diseases. sEVs have been isolated from a variety of sources, ranging from prokaryotes to animals and plants. Human-derived sEVs have many uses in pre- and clinical studies in medicine and drug delivery, while plant-derived EVs, also known as plant-derived nanovesicles (PDNVs), have not been widely investigated until the second decade of the 21st century. For the past five years, there has been a rapid rise in the use of plant EVs as a therapeutic tool due to the ease of massive production with high efficacy and yield of preparation. Plant EVs contain various active biomolecules such as proteins, regulatory RNAs, and secondary metabolites and play a key role in inter-kingdom communications. Many studies have already investigated the potential application of plant EVs in preventing and treating cancer, inflammation, infectious diseases, and tissue regeneration with no sign of toxicity and are therefore considered safe. However, due to a lack of universal markers, the properties of plant EVs have not been extensively studied. Concerns regarding the safety and therapeutic function of plant EVs derived from genetically modified plants have been raised. In this paper, we review the physiological role of EVs in plants. Moreover, we focus on molecular and cellular mechanisms involved in the therapeutic effects of plant EVs on various human diseases. We also provide detailed information on the methodological aspects of plant EV isolation and analysis, which could pave the way for future clinical translation.


Assuntos
Vesículas Extracelulares , Animais , Humanos , Sistemas de Liberação de Medicamentos , Inflamação , RNA
4.
Biology (Basel) ; 12(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38132361

RESUMO

Lemon essential oil (LEO) is known for its aromatic and healthy properties; however, less consideration is given to the biological properties of the fractions obtained from LEO. This study aims to evaluate the ability of a citral-enriched fraction obtained from LEO (Cfr-LEO) to counteract lipopolysaccharide (LPS)-mediated inflammation, oxidative stress, and epithelial-mesenchymal transition (EMT) in healthy human hepatocytes. Human immortalized hepatocytes (THLE-2 cell line) were pretreated with Cfr-LEO and subsequently exposed to LPS at various time points. We report that the pretreatment with Cfr-LEO counteracts LPS-mediated effects by inhibiting inflammation, oxidative stress, and epithelial-mesenchymal transition in THLE-2. In particular, we found that pretreatment with Cfr-LEO reduced NF-κB activation and the subsequent proinflammatory cytokines release, ROS production, and NRF2 and p53 expression. Furthermore, the pretreatment with Cfr-LEO showed its beneficial effect in counteracting LPS-induced EMT. Taken together, these results support Cfr-LEO application in the nutraceutical research field not only for its organoleptic properties, conferred by citral enrichment, but also for its biological activity. Our study could lay the basis for the development of foods/drinks enriched with Cfr-LEO, aimed at preventing or alleviating chronic conditions associated with liver dysfunction.

5.
Polymers (Basel) ; 15(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37571166

RESUMO

Silicon (Si) is an essential trace element in the human body and it exists in connective tissue as aqueous orthosilicic acid. Porous chitosan-3-glycidoxypropyltrimethoxysilane (GPTMS) hybrids can regenerate nerve tissue and recover sensor and motor functions. However, the structures and roles of the degradation products with Si extracted from the hybrids in nerve regeneration are not clear. In this study, we prepared porous chitosan-GPTMS hybrids with different amounts of GPTMS to amino groups of chitosan (chitosan:GPTMS = 1:0.5 and 1:1 molar ratios). The structures of the degradation products with Si from the hybrids were examined using time-of-flight mass spectrometry, and biological assessments were conducted in order to evaluate their potential use in the preparation of devices for nerve repair. Glial and motor cell lines and ex vivo explants of dorsal root ganglia were used in this study for evaluating their behavior in the presence of the different degradation products with Si. The structure of the degradation products with Si depended on the starting composition. The results showed that glial cell proliferation was lower in the medium with the higher-molecular-weight degradation products with Si. Moreover, motor cell line differentiation and the neurite outgrowth of dorsal root ganglion explants were improved with the lower-molecular-weight degradation products with Si. The results obtained could be useful for designing a new nerve regeneration scaffold including silicon components.

6.
iScience ; 26(7): 107041, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37426343

RESUMO

In the last years, extracellular vesicles (EVs) from different plant matrices have been isolated and gained the interest of the scientific community for their intriguing biological properties. In this study, we isolated and characterized nanovesicles from lemon juice (LNVs) and evaluated their antioxidant effects. We tested LNV antioxidant activity using human dermal fibroblasts that were pre-treated with LNVs for 24 h and then stimulated with hydrogen peroxide (H2O2) and UVB irradiation. We found that LNV pre-treatment reduced ROS levels in fibroblasts stimulated with H2O2 and UVB. This reduction was associated with the activation of the AhR/Nrf2 signaling pathway, whose protein expression and nuclear localization was increased in fibroblasts treated with LNVs. By using zebrafish embryos as in vivo model, we confirmed the antioxidant effects of LNVs. We found that LNVs reduced ROS levels and neutrophil migration in zebrafish embryos stimulated with LPS.

7.
RMD Open ; 9(2)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37137540

RESUMO

OBJECTIVES: Aim of this study was to investigate the expression of interleukin (IL)-40, a new cytokine associated with B cells homoeostasis and immune response, in primary Sjögren syndrome (pSS) and in pSS-associated lymphomas. METHODS: 29 patients with pSS and 24 controls were enrolled. Minor salivary gland (MSG) biopsies from patients, controls and parotid gland biopsies from pSS-associated lymphoma were obtained. Quantitative gene expression analysis by TaqMan real-time PCR and immunohistochemistry for IL-40 were performed on MSG. MSG cellular sources of IL-40 were determined by flow-cytometry and immunofluorescence. Serum concentration of IL-40 was assessed by ELISA and cellular sources of IL-40 were determined by flow-cytometry. An in vitro assay with recombinant IL-40 (rIL-40) was performed to detect the effect on cytokine production from peripheral blood mononuclear cells (PBMCs). RESULTS: IL-40 was significantly increased in the lymphocytic infiltrated MSG of patients with pSS and correlated with focus score and with IL-4 and transforming growth factor-ß expression. In addition, IL-40 was increased in the serum of pSS and its levels correlated with the EULAR Sjögren's Syndrome Disease Activity Index score. B cells from patients were shown to be the major source of IL-40 at both tissue and peripheral level. PBMCs from patients, exposed to rIL-40 in vitro, released proinflammatory cytokines, specifically interferon-γ from B cells and T-CD8+ and tumour necrosis factor-α and IL-17 from both T-CD4+ and T-CD8+. IL-40 expression in parotid glands of pSS-associated lymphomas was also increased. Moreover, IL-40-driven NETosis was evidenced in neutrophils obtained from pSS. CONCLUSION: Our results suggest that IL-40 may play a role in pSS pathogenesis and pSS-associated lymphomas.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Glândulas Salivares/metabolismo , Interleucinas/metabolismo , Inflamação , Citocinas/metabolismo
8.
Front Physiol ; 14: 1165868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168227

RESUMO

Introduction: Glyphosate is the active compound of different non-selective herbicides, being the most used agriculture pesticide worldwide. Glyphosate and AMPA (one of its main metabolites) are common pollutants of water, soil, and food sources such as crops. They can be detected in biological samples from both exposed workers and general population. Despite glyphosate acts as inhibitor of the shikimate pathway, present only in plants and some microorganisms, its safety in mammals is still debated. Acute glyphosate intoxications are correlated to cardiovascular/neuronal damages, but little is known about the effects of the chronic exposure. Methods: We evaluated the direct biological effects of different concentrations of pure glyphosate/AMPA on a rat-derived cell line of cardiomyoblasts (H9c2) in acute (1-2 h) or sub-chronic (24-48 h) settings. We analyzed cell viability/morphology, ROS production and mitochondrial dynamics. Results: Acute exposure to high doses (above 10 mM) of glyphosate and AMPA triggers immediate cytotoxic effects: reduction in cell viability, increased ROS production, morphological alterations and mitochondrial function. When exposed to lower glyphosate concentrations (1 µM-1 mM), H9c2 cells showed only a slight variation in cell viability and ROS production, while mitochondrial dynamic was unvaried. Moreover, the phenotype was completely restored after 48 h of treatment. Surprisingly, the sub-chronic (48 h) treatment with low concentrations (1 µM-1 mM) of AMPA led to a late cytotoxic response, reflected in a reduction in H9c2 viability. Conclusion: The comprehension of the extent of human exposure to these molecules remains pivotal to have a better critical view of the available data.

9.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175764

RESUMO

It has been widely demonstrated that the gut microbiota is responsible for essential functions in human health and that its perturbation is implicated in the development and progression of a growing list of diseases. The number of studies evaluating how the gut microbiota interacts with and influences other organs and systems in the body and vice versa is constantly increasing and several 'gut-organ axes' have already been defined. Recently, the view on the link between the gut microbiota (GM) and the peripheral nervous system (PNS) has become broader by exceeding the fact that the PNS can serve as a systemic carrier of GM-derived metabolites and products to other organs. The PNS as the communication network between the central nervous system and the periphery of the body and internal organs can rather be affected itself by GM perturbation. In this review, we summarize the current knowledge about the impact of gut microbiota on the PNS, with regard to its somatic and autonomic divisions, in physiological, regenerative and pathological conditions.


Assuntos
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Sistema Nervoso Central , Sistema Nervoso Periférico/metabolismo
10.
Front Bioeng Biotechnol ; 11: 1162684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082209

RESUMO

As a reliable alternative to autografts, decellularized peripheral nerve allografts (DPNAs) should mimic the complex microstructure of native nerves and be immunogenically compatible. Nevertheless, there is a current lack of decellularization methods able to remove peripheral nerve cells without significantly altering the nerve extracellular matrix (ECM). The aims of this study are firstly to characterize ex vivo, in a histological, biochemical, biomechanical and ultrastructural way, three novel chemical-enzymatic decellularization protocols (P1, P2 and P3) in rat sciatic nerves and compared with the Sondell classic decellularization method and then, to select the most promising DPNAs to be tested in vivo. All the DPNAs generated present an efficient removal of the cellular material and myelin, while preserving the laminin and collagen network of the ECM (except P3) and were free from any significant alterations in the biomechanical parameters and biocompatibility properties. Then, P1 and P2 were selected to evaluate their regenerative effectivity and were compared with Sondell and autograft techniques in an in vivo model of sciatic defect with a 10-mm gap, after 15 weeks of follow-up. All study groups showed a partial motor and sensory recovery that were in correlation with the histological, histomorphometrical and ultrastructural analyses of nerve regeneration, being P2 the protocol showing the most similar results to the autograft control group.

11.
Clin Immunol ; 251: 109332, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075950

RESUMO

Ankylosing spondylitis (AS) is an inflammatory disease leading to spine ankylosis; however, the mechanisms behind new bone formation are still not fully understood. Single Nucleotide Polymorphisms (SNPs) in PTGER4, encoding for the receptor EP4 of prostaglandin E2 (PGE2), are associated with AS. Since the PGE2-EP4 axis participates in inflammation and bone metabolism, this work aims at investigating the influence of the prostaglandin-E2 axis on radiographic progression in AS. In 185 AS (97 progressors), baseline serum PGE2 predicted progression, and PTGER4 SNP rs6896969 was more frequent in progressors. Increased EP4/PTGER4 expression was observed in AS circulating immune cells, synovial tissue, and bone marrow. CD14highEP4 + cells frequency correlated with disease activity, and when monocytes were cocultured with mesenchymal stem cells, the PGE2/EP4 axis induced bone formation. In conclusion, the Prostaglandin E2 axis is involved in bone remodelling and may contribute to the radiographic progression in AS due to genetic and environmental upregulation.


Assuntos
Dinoprostona , Espondilite Anquilosante , Humanos , Receptores de Prostaglandina E Subtipo EP4/genética , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Espondilite Anquilosante/diagnóstico por imagem , Espondilite Anquilosante/genética
12.
Plants (Basel) ; 12(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986896

RESUMO

The scientific community has become increasingly interested in plant-derived nanoparticles (PDNPs) over the past ten years. Given that they possess all the benefits of a drug carrier, including non-toxicity, low immunogenicity, and a lipid bilayer that protects its content, PDNPs are a viable model for the design of innovative delivery systems. In this review, a summary of the prerequisites for mammalian extracellular vesicles to serve as delivery vehicles will be given. After that, we will concentrate on providing a thorough overview of the studies investigating the interactions of plant-derived nanoparticles with mammalian systems as well as the loading strategies for encapsulating therapeutic molecules. Finally, the existing challenges in establishing PDNPs as reliable biological delivery systems will be emphasized.

13.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768142

RESUMO

Regeneration of damaged peripheral nerves remains one of the main challenges of neurosurgery and regenerative medicine, a nerve functionality is rarely restored, especially after severe injuries. Researchers are constantly looking for innovative strategies for tackling this problem, with the development of advanced tissue-engineered nerve conduits and new pharmacological and physical interventions, with the aim of improving patients' life quality. Different evaluation methods can be used to study the effectiveness of a new treatment, including functional tests, morphological assessment of regenerated nerve fibers and biomolecular analyses of key factors necessary for good regeneration. The number and diversity of protocols and methods, as well as the availability of innovative technologies which are used to assess nerve regeneration after experimental interventions, often makes it difficult to compare results obtained in different labs. The purpose of the current review is to describe the main morphological approaches used to evaluate the degree of nerve fiber regeneration in terms of their usefulness and limitations.


Assuntos
Traumatismos dos Nervos Periféricos , Humanos , Nervos Periféricos/fisiologia , Fibras Nervosas , Engenharia Tecidual , Regeneração Nervosa/fisiologia , Nervo Isquiático/fisiologia
14.
J Food Sci ; 88(3): 1172-1187, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36651875

RESUMO

Chronic inflammation is linked to the development of numerous diseases and is accompanied by increased cytokine secretion. Macrophages provide a first line of defense against pathogens that under inflammatory stimuli release pro-inflammatory cytokines. The essential oil (EO) fractions obtained from Citrus spp. rich in different compounds have gained the attention of both researchers and users during the last decades. In particular, grapefruit (Citrus paradisi) peel is rich in phenolics and flavonoids with several health benefits, including anti-inflammatory actions. Additionally, its EO consists of a large number of compounds such as monoterpenes, sesquiterpenes, alcohols, aldehydes, esters, and oxides. Among the methods for encapsulating EOs, spray-drying is the main one. In the present study, we aimed to determine the in vitro anti-inflammatory activity of EO from C. paradisi (grapefruit essential oil [GEO]) (whole and fractions) in a lipopolysaccharide (LPS)-induced inflammation model. Results indicate that Fr-GEO and Fr-GEO_SD exert protective effects against LPS-induced inflammation by decreasing gene expression and levels of pro-inflammatory cytokines as IL-6 and TNF-α. Monoterpenes as the most common components, as well as aldehydes and sesquiterpenes, might be responsible for such effects, although a synergistic action is not excluded. Furthermore, a higher percent of aldehydes is linked to improved olfactory properties. Our findings support the anti-inflammatory effects of selected Fr-GEO with a great potential for the development of new nutraceuticals and/or functional food for the treatment of inflammatory-associated diseases. PRACTICAL APPLICATION: The findings of this study support the anti-inflammatory effects of selected Fr-GEO with a great potential for the development of new nutraceuticals and/or functional food for the treatment of inflammatory-associated diseases.


Assuntos
Citrus paradisi , Óleos Voláteis , Óleos Voláteis/farmacologia , Aldeídos/farmacologia , Lipopolissacarídeos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Monoterpenos , Citocinas
15.
Methods Mol Biol ; 2566: 187-203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152252

RESUMO

Histochemical and fluorescence-based techniques enable the specific identification of myelin by bright-field or fluorescence microscopy. In this chapter, we describe four histological methods for the evaluation of myelin on peripheral nerve tissue sections. The first method combines the Luxol fast blue (LFB) technique with a modified Picrosirius staining contrasted with Harris hematoxylin, called MCOLL. This method simultaneously stains myelin, collagen fibers, and cell nuclei, thus giving an integrated overview of the histology, collagen network, and myelin content of the tissue in paraffin-embedded or cryosectioned samples. Secondly, we describe the osmium tetroxide method, which provides a permanent positive reaction for myelin as well as other lipids present in the tissue. The third method is the immunofluorescence-based detection of myelin proteins that allows to combine information about their expression status with other proteins of interest. Finally, the FluoroMyelin™ stains enable a fast detection of the myelin content that can be easily implemented in immunofluorescence staining panels for cryosectioned tissues. Together, this chapter provides a variety of methods to accurately identify myelin in different experimental approaches.


Assuntos
Bainha de Mielina , Tetróxido de Ósmio , Colágeno/metabolismo , Corantes/análise , Hematoxilina , Lipídeos/análise , Bainha de Mielina/metabolismo , Coloração e Rotulagem
16.
Neural Regen Res ; 18(6): 1378-1385, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36453426

RESUMO

Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair; however, results are still not comparable with the current gold standard technique "autografts". Hollow conduits do not provide a successful regeneration outcome when it comes to critical nerve gap repair. Enriching the lumen of conduits with different extracellular materials and cells could provide a better biomimicry of the natural nerve regenerating environment and is expected to ameliorate the conduit performance. In this study, we evaluated nerve regeneration in vivo using hollow chitosan conduits or conduits enriched with fibrin-collagen hydrogels alone or with the further addition of adipose-derived mesenchymal stem cells in a 15 mm rat sciatic nerve transection model. Unexpected changes in the hydrogel consistency and structural stability in vivo led to a failure of nerve regeneration after 15 weeks. Nevertheless, the molecular assessment in the early regeneration phase (7, 14, and 28 days) has shown an upregulation of useful regenerative genes in hydrogel enriched conduits compared with the hollow ones. Hydrogels composed of fibrin-collagen were able to upregulate the expression of soluble NRG1, a growth factor that plays an important role in Schwann cell transdifferentiation. The further enrichment with adipose-derived mesenchymal stem cells has led to the upregulation of other important genes such as ErbB2, VEGF-A, BDNF, c-Jun, and ATF3.

17.
Cell Biol Int ; 47(3): 634-647, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36378586

RESUMO

Angiogenesis, a process characterized by the formation of new blood vessels from pre-existing ones, is a crucial step in tumor growth and dissemination. Given the ability of tumors to interfere with multiple or different molecular pathways to promote angiogenesis, there is an increasing need to therapeutically block tumor progression by targeting multiple antiangiogenic pathways. Natural polyphenols present health-protective properties, which are likely attributed to their ability to activate multiple pathways involved in inflammation, carcinogenesis, and angiogenesis. Recently, increased attention has been addressed to the ability of flavonoids, the most abundant polyphenols in the diet, to prevent cancer by suppressing angiogenesis. Here we investigate the mechanisms by which xanthohumol (the major prenylated flavonoid of the hop plant Humulus lupulus L.) and nobiletin (flavonoid from red-orange Citrus sinensis) can modulate the effects of Tumor Necrosis Factor-α (TNF-α) on human umbilical vein endothelial cells (HUVEC). The results reported in this paper show that xanthohumol and nobiletin pretreatment of HUVEC inhibits the effects induced by TNF-α on cell migration, invasion capability, and colon cancer cell adhesion on the endothelial monolayer. Moreover, the pretreatment reduces metalloproteinases and adhesion molecules' expression. Finally, our results highlight that xanthohumol and nobiletin can counteract the effects of TNF-α on angiogenesis and invasiveness, mainly through Vascular Endothelial Growth Factor and NF-κB pathways. Since angiogenesis plays an important pathological role in the progression of several diseases, our findings may provide clues for developing xanthohumol and nobiletin as therapeutic agents against angiogenesis-associated diseases.


Assuntos
NF-kappa B , Neoplasias , Humanos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Flavonoides/farmacologia , Transdução de Sinais , Neoplasias/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Polifenóis/metabolismo , Polifenóis/farmacologia
18.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203716

RESUMO

In the last years, the field of nanomedicine and drug delivery has grown exponentially, providing new platforms to carry therapeutic agents into the target sites. Extracellular vesicles (EVs) are ready-to-use, biocompatible, and non-toxic nanoparticles that are revolutionizing the field of drug delivery. EVs are involved in cell-cell communication and mediate many physiological and pathological processes by transferring their bioactive cargo to target cells. Recently, nanovesicles from plants (PDNVs) are raising the interest of the scientific community due to their high yield and biocompatibility. This study aims to evaluate whether PDNVs may be used as drug delivery systems. We isolated and characterized nanovesicles from tangerine juice (TNVs) that were comparable to mammalian EVs in size and morphology. TNVs carry the traditional EV marker HSP70 and, as demonstrated by metabolomic analysis, contain flavonoids, organic acids, and limonoids. TNVs were loaded with DDHD1-siRNA through electroporation, obtaining a loading efficiency of 13%. We found that the DDHD1-siRNA complex TNVs were able to deliver DDHD1-siRNA to human colorectal cancer cells, inhibiting the target expression by about 60%. This study represents a proof of concept for the use of PDNVs as vehicles of RNA interference (RNAi) toward mammalian cells.


Assuntos
Citrus , Neoplasias Colorretais , Humanos , Animais , RNA Interferente Pequeno/genética , Estudo de Prova de Conceito , Linhagem Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Mamíferos
19.
Front Med (Lausanne) ; 10: 1280592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239607

RESUMO

Despite the increasing body of evidence supporting the use of simulation in medicine, a question remains: when should we introduce it into the medical school's curriculum? We present the experience and future perspectives of the MD program in Medicine and Surgery of University of Turin-MedInTo. Since its launch, MedInTo has been dedicated to integrating innovative teaching approaches at the early stages into the medical curriculum. Herewith, we describe a case-based approach for our activities, which includes the utilization of simulation for emergency medical care training for students and the integration of virtual and augmented reality technology. Dedicated surgical training activities using virtual-augmented reality and life-like simulator for students are also described.

20.
J Cell Mol Med ; 26(15): 4195-4209, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35789531

RESUMO

Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti-inflammatory drugs prompt the identification of new therapeutic strategies. Plant-derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed-phase high-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (RP-HPLC-ESI-Q-TOF-MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre-treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre-treatment with LEVs decreased gene and protein expression of pro-inflammatory cytokines, such as IL-6, IL1-ß and TNF-α, and reduced the nuclear translocation and phosphorylation of NF-κB in LPS-stimulated murine macrophages. The inhibition of NF-κB activation was associated with the reduction in ERK1-2 phosphorylation. Furthermore, the ability of LEVs to decrease pro-inflammatory cytokines and increase anti-inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti-inflammatory effects both in vitro and ex vivo by inhibiting the ERK1-2/NF-κB signalling pathway.


Assuntos
Citrus , Vesículas Extracelulares , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citrus/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...